2,030 research outputs found

    On the Indeterministic Nature of Star Formation on the Cloud Scale

    Full text link
    Molecular clouds are turbulent structures whose star formation efficiency (SFE) is strongly affected by internal stellar feedback processes. In this paper we determine how sensitive the SFE of molecular clouds is to randomised inputs in the star formation feedback loop, and to what extent relationships between emergent cloud properties and the SFE can be recovered. We introduce the yule suite of 26 radiative magnetohydrodynamic (RMHD) simulations of a 10,000 solar mass cloud similar to those in the solar neighbourhood. We use the same initial global properties in every simulation but vary the initial mass function (IMF) sampling and initial cloud velocity structure. The final SFE lies between 6 and 23 percent when either of these parameters are changed. We use Bayesian mixed-effects models to uncover trends in the SFE. The number of photons emitted early in the cluster's life and the length of the cloud provide are the strongest predictors of the SFE. The HII regions evolve following an analytic model of expansion into a roughly isothermal density field. The more efficient feedback is at evaporating the cloud, the less the star cluster is dispersed. We argue that this is because if the gas is evaporated slowly, the stars are dragged outwards towards surviving gas clumps due to the gravitational attraction between the stars and gas. While star formation and feedback efficiencies are dependent on nonlinear processes, statistical models describing cloud-scale processes can be constructed.Comment: 24 pages, 16 figures, 6 tables. Accepted to MNRAS, version updated with published titl

    Wolf howls encode both sender- and context-specific information

    Get PDF
    Loud, long-distance calls serve varied functions across animal species including marking territory, attracting mates and signalling one's identity. Here, we examined the types of sender- and context-specific information encoded in the howls of captive timber wolves, Canis lupus. We analysed 913 howls from nine individuals across three packs and investigated whether howl structure varied consistently as a function of phenotypic factors (age class, sex, pack and identity of the caller) in addition to the context in which the call was produced: specifically, whether the call was produced in a ‘spontaneous’ context just after sunrise or was ‘elicited’ by the absence of a group member. Calls were correctly classified by individual identity and production context, but not by any other factors. Principal components analyses indicated that individual differences were primarily associated with frequency-based measures, whereas acoustic variation between production contexts was associated with a variety of frequency-, intensity- and energy-based measures. Recognition of individual differences in vocalizations is likely to be important for navigating social relationships in wolves and further work is required to determine which life history factors may shape these individual differences. Differences resulting from production context are suggestive that these howl variants may serve different functions. The extent to which these individual and contextual differences are understood by receivers remains an open question

    Reply to Fischer et al

    Get PDF
    We welcome the correspondence from Fischer and colleagues regarding our recent paper on vocal learning in chimpanzee food grunts [1]. Fischer et al. make two challenges to our paper's conclusions, which we address here

    Chimpanzees demonstrate individual differences in social information use

    Get PDF
    Studies of transmission biases in social learning have greatly informed our understanding of how behaviour patterns may diffuse through animal populations, yet within-species inter-individual variation in social information use has received little attention and remains poorly understood. We have addressed this question by examining individual performances across multiple experiments with the same population of primates. We compiled a dataset spanning 16 social learning studies (26 experimental conditions) carried out at the same study site over a 12-year period, incorporating a total of 167 chimpanzees. We applied a binary scoring system to code each participant’s performance in each study according to whether they demonstrated evidence of using social information from conspecifics to solve the experimental task or not (Social Information Score—‘SIS’). Bayesian binomial mixed effects models were then used to estimate the extent to which individual differences influenced SIS, together with any effects of sex, rearing history, age, prior involvement in research and task type on SIS. An estimate of repeatability found that approximately half of the variance in SIS was accounted for by individual identity, indicating that individual differences play a critical role in the social learning behaviour of chimpanzees. According to the model that best fit the data, females were, depending on their rearing history, 15–24% more likely to use social information to solve experimental tasks than males. However, there was no strong evidence of an effect of age or research experience, and pedigree records indicated that SIS was not a strongly heritable trait. Our study offers a novel, transferable method for the study of individual differences in social learning

    Nonadjacent dependency processing in monkeys, apes and humans

    Get PDF
    The ability to track syntactic relationships between words, particularly over distances (“nonadjacent dependencies”), is a critical faculty underpinning human language, although its evolutionary origins remain poorly understood. While some monkey species are reported to process auditory nonadjacent dependencies, comparative data from apes are missing, complicating inferences regarding shared ancestry. Here, we examined nonadjacent dependency processing in common marmosets, chimpanzees, and humans using “artificial grammars”: strings of arbitrary acoustic stimuli composed of adjacent (nonhumans) or nonadjacent (all species) dependencies. Individuals from each species (i) generalized the grammars to novel stimuli and (ii) detected grammatical violations, indicating that they processed the dependencies between constituent elements. Furthermore, there was no difference between marmosets and chimpanzees in their sensitivity to nonadjacent dependencies. These notable similarities between monkeys, apes, and humans indicate that nonadjacent dependency processing, a crucial cognitive facilitator of language, is an ancestral trait that evolved at least ~40 million years before language itself

    Testing the acoustic adaptation hypothesis with vocalizations from three mongoose species

    Full text link
    Acoustic signals degrade and attenuate as they propagate through the environment, thus transmitting information with lower efficiency. The acoustic adaptation hypothesis (AAH) states that selection should shape the vocalizations of a species to maximize transmission through their habitat. A specific prediction of the AAH is that vocalizations will transmit better when emitted in their native habitat versus non-native habitats. We tested this prediction using vocalizations of three mongoose species that dwell in structurally different habitats: banded mongooses, Mungos mungo, dwarf mongooses, Helogale parvula, and meerkats, Suricata suricatta. Representative vocalizations of the three species were broadcast and rerecorded in each habitat at six distances from the source. Rerecorded vocalizations were compared to nondegraded calls through spectrogram correlation. Using generalized linear mixed models, we then quantified the differences in transmission fidelity of each species' vocalizations. Overall, we found partial support for the AAH within the mongoose family: habitat type strongly affected sound transmission, but depending on the species, vocalizations did not always transmit best in their native habitat, suggesting various degrees of acoustic adaptation. Vegetation cover within habitat type was also found to have a significant influence on the transmission properties of vocalizations. In addition, we found evidence that by changing their behaviour, either by producing vocalizations at different amplitudes or by choosing a specific calling location, mongooses can reduce sound degradation and attenuation over distance, thereby enhancing their communication efficiency. Our work highlights how habitat features may be key determinants of vocalization structure in mongooses, and is generalizable to other species living in similar conditions. It also suggests that, given a species and habitat, other selective pressures might prevail and limit acoustic adaptation in animal communication systems. Finally, our study provides insights into how mammals can adjust their vocal behaviour to compensate for environmental constraints on the transmission of their vocalizations

    Asymptotic properties of Born-improved amplitudes with gauge bosons in the final state

    Get PDF
    For processes with gauge bosons in the final state we show how to continuously connect with a single Born-improved amplitude the resonant region, where resummation effects are important, with the asymptotic region far away from the resonance, where the amplitude must reduce to its tree-level form. While doing so all known field-theoretical constraints are respected, most notably gauge-invariance, unitarity and the equivalence theorem. The calculations presented are based on the process ffˉZZf\bar{f}\to ZZ, mediated by a possibly resonant Higgs boson; this process captures all the essential features, and can serve as a prototype for a variety of similar calculations. By virtue of massive cancellations the resulting closed expressions for the differential and total cross-sections are particularly compact.Comment: 23 pages, Latex, 4 Figures, uses axodra

    Collaboration between Science and Religious Education teachers in Scottish Secondary schools

    Get PDF
    The article reports on quantitative research that examines: (1) the current practice in collaboration; and (2) potential for collaboration between Science and Religious Education teachers in a large sample of Scottish secondary schools. The authors adopt and adapt three models (conflict; concordat and consonance) to interrogate the relationship between science and religion (and the perceived relation between these two subjects in schools) (Astley and Francis 2010). The findings indicate that there is evidence of limited collaboration and, in a few cases, a dismissive attitude towards collaboration (conflict and concordat and very weak consonance). There is, however, evidence of a genuine aspiration for greater collaboration among many teachers (moving towards a more robust consonance model). The article concludes by discussing a number of key factors that must be realised for this greater collaboration to be enacted

    The Spatial Expansion and Ecological Footprint of Fisheries (1950 to Present)

    Get PDF
    Using estimates of the primary production required (PPR) to support fisheries catches (a measure of the footprint of fishing), we analyzed the geographical expansion of the global marine fisheries from 1950 to 2005. We used multiple threshold levels of PPR as percentage of local primary production to define ‘fisheries exploitation’ and applied them to the global dataset of spatially-explicit marine fisheries catches. This approach enabled us to assign exploitation status across a 0.5° latitude/longitude ocean grid system and trace the change in their status over the 56-year time period. This result highlights the global scale expansion in marine fisheries, from the coastal waters off North Atlantic and West Pacific to the waters in the Southern Hemisphere and into the high seas. The southward expansion of fisheries occurred at a rate of almost one degree latitude per year, with the greatest period of expansion occurring in the 1980s and early 1990s. By the mid 1990s, a third of the world's ocean, and two-thirds of continental shelves, were exploited at a level where PPR of fisheries exceed 10% of PP, leaving only unproductive waters of high seas, and relatively inaccessible waters in the Arctic and Antarctic as the last remaining ‘frontiers.’ The growth in marine fisheries catches for more than half a century was only made possible through exploitation of new fishing grounds. Their rapidly diminishing number indicates a global limit to growth and highlights the urgent need for a transition to sustainable fishing through reduction of PPR
    corecore